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COORDINATE-INDEPENDENT SPARSE SUFFICIENT DIMENSION
REDUCTION AND VARIABLE SELECTION
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Sufficient dimension reduction (SDR) in regression, which reduces the
dimension by replacing original predictors with a minimal set of their linear
combinations without loss of information, is very helpful when the number
of predictors is large. The standard SDR methods suffer because the esti-
mated linear combinations usually consist of all original predictors, mak-
ing it difficult to interpret. In this paper, we propose a unified method—
coordinate-independent sparse estimation (CISE)—that can simultaneously
achieve sparse sufficient dimension reduction and screen out irrelevant and
redundant variables efficiently. CISE is subspace oriented in the sense that
it incorporates a coordinate-independent penalty term with a broad series of
model-based and model-free SDR approaches. This results in a Grassmann
manifold optimization problem and a fast algorithm is suggested. Under mild
conditions, based on manifold theories and techniques, it can be shown that
CISE would perform asymptotically as well as if the true irrelevant predictors
were known, which is referred to as the oracle property. Simulation studies
and a real-data example demonstrate the effectiveness and efficiency of the
proposed approach.

1. Introduction. Consider the regression of a univariate response y on p ran-
dom predictors x = (x1, . . . , xp)T ∈ R

p , with the general goal of inferring about
the conditional distribution of y|x. When p is large, most statistical methods face
the “curse of dimensionality,” and thus dimension reduction is desirable.

Sufficient dimension reduction (SDR) introduced by Cook (1994, 1998a) is im-
portant in both theory and practice. It strives to reduce the dimension of x by
replacing it with a minimal set of linear combinations of x, without loss of in-
formation on the conditional distribution of y|x. If a predictor subspace S ⊆ R

p

satisfies

y ⊥⊥ x|PS x,

where ⊥⊥ stands for independence and P(·) represents the projection matrix with
respect to the standard inner product, then S is called a dimension reduction space.
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The central subspace Sy|x, which is the intersection of all dimension reduction
spaces, is an essential concept of SDR. Under mild conditions, it can be shown
that Sy|x is itself a dimension reduction subspace [Cook (1994, 1998a)], which we
assume throughout this article, and then it is taken as the parameter of interest. The
dimension d of Sy|x, usually far less than p, is assumed to be known in this article.
We also assume throughout that n > p.

There has been considerable interest in dimension reduction methods since the
introduction of sliced inverse regression [SIR; Li (1991)] and sliced average vari-
ance estimation [SAVE; Cook and Weisberg (1991)]. Li (1992) and Cook (1998b)
proposed and studied the method of principal Hessian directions (PHD), and the
related method of iterative Hessian transformations was proposed by Cook and Li
(2002). Chiaromonte, Cook and Li (2002) proposed partial sliced inverse regres-
sion for estimating a partial central subspace. Yin and Cook (2002) introduced a
covariance method for estimating the central kth moment subspace. Most of these
and many other dimension reduction methods are based on the first two condi-
tional moments and as a class are called F2M methods [Cook and Forzani (2009)].
They provide exhaustive estimation of Sy|x under mild conditions. Recently, Li and
Wang (2007) proposed another F2M method called directional regression (DR).
They argued that DR is more accurate than or competitive with all of the previous
F2M dimension reduction proposals. In contrast to these and other moment-based
SDR approaches, Cook (2007) introduced a likelihood-based paradigm for SDR
that requires a model for the inverse regression of x on y. This paradigm, which is
broadly referred to as principal fitted components (PFC), was developed further by
Cook and Forzani (2009). Likelihood-based SDR inherits properties and methods
from general likelihood theory and can be very efficient in estimating the central
subspace.

All of the aforementioned dimension reduction methods suffer because the esti-
mated linear reductions usually involve all of the original predictors x. As a conse-
quence, the results can be hard to interpret, the important variables may be difficult
to identify and the efficiency gain may be less than that possible with variable se-
lection. These limitations can be overcome by screening irrelevant and redundant
predictors while still estimating a few linear combinations of the active predictors.
Some attempts have been made to address this problem in dimension reduction
generally and SDR in particular. For example, Li, Cook and Nachtsheim (2005)
proposed a model-free variable selection method based on SDR. Zou, Hastie and
Tibshirani (2006) proposed a sparse principal component analysis. Ni, Cook and
Tsai (2005) introduced a shrinkage version of SIR, while Li and Nachtsheim
(2006) suggested a sparse version of SIR. Li (2007) studied sparse SDR by adapt-
ing the approach of Zou, Hastie and Tibshirani (2006). Zhou and He (2008) pro-
posed a constrained canonical correlation procedure (C3) based on imposing the
L1-norm constraint on the effective dimension reduction estimates in CANCOR
[Fung et al. (2002)], followed by a simple variable filtering method. Their proce-
dure is attractive because they showed that it has the oracle property [Donoho and



3698 X. CHEN, C. ZOU AND R. D. COOK

Johnstone (1994), Fan and Li (2001)]. More recently, Leng and Wang (2009) pro-
posed a general adaptive sparse principal component analysis and Johnstone and
Lu (2009) studied the large p theory in sparse principal components analysis.

However, most existing sparse dimension reduction methods are conducted
stepwise, estimating a sparse solution for a basis matrix of the central subspace
column by column. Instead, in this article, we propose a unified one-step ap-
proach to reduce the number of variables appearing in the estimate of Sy|x. Our
approach, which hinges operationally on Grassmann manifold optimization, is
able to achieve dimension reduction and variable selection simultaneously. Ad-
ditionally, our proposed method has the oracle property: under mild conditions the
proposed estimator would perform asymptotically as well as if the true irrelevant
predictors were known.

We start in Section 2.1 by reviewing the link between many SDR methods and
a generalized eigenvalue problem disclosed by Li (2007). In Section 2.2, we de-
scribe a new SDR penalty function that is invariant under orthogonal transforma-
tions and targets the removal of row vectors from the basis matrix. Based on this
penalty function, in Section 2.3, a coordinate-independent penalized procedure is
proposed which enables us to incorporate many model-free and model-based SDR
approaches into a simple and unified framework to implement variable selection
within SDR. A fast algorithm, which combines a local quadratic approximation
[Fan and Li (2001)] and an eigensystem analysis in each iteration step, is sug-
gested in Section 2.4 to handle our Grassmann manifold optimization problem
with its nondifferentiable penalty function. In Section 2.5, we describe the oracle
property of our estimator. Its proof differs significantly from those in the context
of variable selection in single-index models [e.g., Fan and Li (2001), Zou (2006)]
because the focus here is on subspaces rather than on coordinates. Results of sim-
ulation studies are reported in Section 3, and the Boston housing data, is analyzed
in Section 4. Concluding remarks about the proposed method can be found in Sec-
tion 5. Technical details are given in the Appendix.

2. Theory and methodology.

2.1. Motivation: Generalized eigenvalue problems revisited. Li (2007) showed
that many moment based sufficient dimension reduction methods can be formu-
lated as a generalized eigenvalue problem in the following form:

Mnδni = λniNnδni for i = 1, . . . , p,(2.1)

where Mn ≥ 0 is a method-specific symmetric kernel matrix, Nn > 0 is symmetric,
often taking the form of the sample covariance matrix �n of x; δn1, . . . , δnp are
eigenvectors such that δT

niNnδnj = 1 if i = j and 0 if i �= j and λn1 ≥ · · · ≥ λnp are
the corresponding eigenvalues. We use the subscript “n” to indicate that �n, Mn,
Nn and λni are the sample versions of the corresponding population analogs �,
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TABLE 1
The generalized eigenvalue formulations for principle component analysis (PCA), principle fitted

component (PFC) models, sliced inverse regression (SIR), sliced average variance estimation
(SAVE) and directional regression (DR) methods

Method M N

PCA � Ip
PFC �fit �

SIR Cov[E{x − E(x)|y}] �

SAVE �1/2E[{Ip − Cov(z|y)}2]�1/2 �

DR �1/2{2E[E2(zzT |y)] + 2E2[E(z|y)E(zT |y)]
+2E[E(z|y)E(z|y)]E[E(z|y)E(zT |y)] − 2Ip}�1/2 �

M, N and λi . Under certain conditions that are usually imposed only on the mar-
ginal distribution of x, the first d eigenvectors {δn1, . . . , δnd}, which correspond
to the nonzero eigenvalues λn1 > · · · > λnd form a consistent estimator of a basis
for the central subspace. Letting z = �−1/2{x −E(x)}. Many commonly used mo-
ment based SDR methods are listed in Table 1 with the population versions of Mn

and Nn.
Following Cook (2004), Li (2007) showed that the eigenvectors {δn1, . . . , δnd}

from (2.1) can be obtained by minimizing a least square objective function. Let

V̂ = arg min
V

p∑
i=1

‖N−1
n mi − VVT mi‖2

Nn
subject to VT NnV = Id,(2.2)

where mi denotes the ith column of M1/2
n , i = 1, . . . , p, V is a p × d matrix and

the norm here is with respect to the Nn inner product. Then V̂j = δnj , j = 1, . . . , d ,
where V̂j stands for the j th column of V̂, so that span(V̂) is the estimator of the
central subspace. To get a sparse solution, Li then added penalties to the objective
function in (2.2), leading to the optimization problem

(α̂, V̂s) = min
α,V

{ p∑
i=1

‖N−1
n mi − αVT mi‖2

Nn
+ τ2 tr(VT NnV) +

d∑
i=1

τ1,j‖Vj‖1

}
,

subject to αT Nnα = Id , where tr(·) stands for the trace operator, ‖ · ‖r denotes
the Lr norm, τ2 is some positive constant and τ1,j ≥ 0 for j = 1, . . . , d are the
lasso shrinkage parameters that need to be determined by some method like cross
validation (CV). The solution V̂s is called the sparse sufficient dimension reduction
estimator. As a result of the lasso constraint, V̂s is expected to have some elements
shrunk to zero.

We can see that Li’s sparsity method is coordinate dependent because the L1
penalty term is not invariant under the orthogonal transformation of the basis and
it forces individual elements of the basis matrix V̂s to zero. However, variable
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screening requires that entire rows of V̂s be zero, which is not the explicit goal of
Li’s method. To see this more clearly, partition x as (xT

1 ,xT
2 )T , where x1 corre-

sponds to q elements of x and x2 to the remaining elements. If

y ⊥⊥ x2|x1,(2.3)

then x2 can be removed, as given x1, x2 contains no further information about y.
Let the p × d matrix η be a basis for Sy|x and partition η = (ηT

1 ,ηT
2 )T in ac-

cordance with the partition of x. Then the condition (2.3) is equivalent to η2 = 0
[Cook (2004)], so the corresponding rows of the basis are zero vector.

In effect, Li’s method is designed for element screening, not variable screening.
Our experience reflects this limitation and reinforces the notion that V̂s may not
be sufficiently effective at variable screening. Inspired by Li’s method, we propose
a new variable screening method—called coordinate-independent sparse estima-
tion (CISE)—in the next subsection. We will show that CISE is simpler and more
effective than Li’s method at variable screening.

CISE can be applied not only to moment based SDR approaches but also model
based approaches. Cook (2007) and Cook and Forzani (2008) developed several
powerful model-based dimension reduction approaches, collectively referred to as
principal fitted components (PFC). PFC-based SDR methods can also be formu-
lated in the same way as (2.1), as summarized in the next proposition. In prepara-
tion, consider the following model for the conditional distribution of x given y,

x = μ + �ξ f(y) + �1/2ε,(2.4)

where μ ∈ R
p is a location vector, � ∈ R

p×d , �T � = Id , ξ ∈ R
d×r with rank d ,

f ∈ R
r is a known vector-valued function of y, � = Var(x|y) > 0, and ε ∈ R

p is
assumed to be independent of y and normally distributed with mean 0 and identity
covariance matrix.

PROPOSITION 1. Suppose the conditional distribution of x given y can be
described by (2.4). Then the maximum likelihood estimator (MLE) of Sy|x can
be obtained through the generalized eigenvalue problem of the form (2.1) with
Mn = �̂fit and Nn = �n, where �̂fit is the sample covariance matrix of the fitted
vectors from the linear regression of x on f.

A commonly used case in the PFC models is � = σ 2Ip for σ > 0, in which the
MLE of Sy|x can be obtained through (2.1) with Mn = �̂fit and Nn = Ip . The co-
variates f(y) in model (2.4) usually take form of polynomial, piecewise or Fourier
basis functions. Thus, the PFC models can effectively deal with the nonlinear re-
lationship between the predictors and the response.
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2.2. A coordinate-independent penalty function. Let V = (v1, . . . ,vp)T de-
note a p × d matrix with rows vT

i , i = 1, . . . , p. In this section, we introduce a
coordinate-independent penalty, depending only on the subspace spanned by the
columns of V. Let qi be the vector in R

p with the ith component one, else zero.
We define a general coordinate-independent penalty function as

φ(V) = ∑
i

θihi(qT
i VVT qi),

where θi ≥ 0 serve as penalty parameters, and hi are positive convex functions
defined in R

d . To achieve variable screening, the functions hi must be nondif-
ferentiable at the zero vector. It is clear that the function φ is independent of
the basis used to represent the span of V, since for any orthogonal matrix O,
φ(V) = φ(VO). In fact, any penalty function defined on VVT meets our require-
ment.

Given h1 = · · · = hp = √
(·), we have a special coordinate-independent penalty

function:

ρ(V) =
p∑

i=1

θi‖vi‖2.(2.5)

A method for selecting the tuning parameters will be discussed in Section 2.6. We
can see that the penalty function ρ has the same form as the group lasso proposed
by Yuan and Lin (2006) but their concepts and usages are essentially different.
Through this article, we shall use only ρ in application and theory to demonstrate
our ideas.

Penalty (2.5) is appealing for variable selection because it is independent of the
basis used to represent the span of V, ρ(V) = ρ(VO) for any orthogonal matrix O,
and because it groups the row vector coefficients of V. This motivated us to con-
sider the regularized function (2.5) that can shrink the corresponding row vectors
of irrelevant variables to zero. Another appealing feature of using this penalty is
its oracle property, which is discussed in Section 2.5.

2.3. Coordinate-independent sparse estimation. Recall the generalized eigen-
value problem (2.1) and the associated notation. Formally,

p∑
i=1

‖N−1
n mi − VVT mi‖2

Nn
= tr(Gn) − tr(VT MnV),

where Gn = N−1/2
n MnN−1/2

n and we use G to denote its population analog in what
follows. Hence, the ordinary sufficient dimension reduction estimation (OSDRE)
given in (2.2) is

V̂ = arg min
V

− tr(VT MnV) subject to VT NnV = Id .(2.6)
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By using the coordinate independent penalty function given in last subsection, we
propose the following coordinate-independent sparse sufficient dimension reduc-
tion estimator (CISE):

Ṽ = arg min
V

{− tr(VT MnV) + ρ(V)} subject to VT NnV = Id,(2.7)

where ρ(V) is defined in (2.5).
The solution Ṽ is not unique as ṼO is also a solution for any orthogonal ma-

trix O. In a strict sense, we are minimizing (2.7) over the span of the columns of V.
Thus, Ṽ denotes any basis of the solution of (2.7). Analogously, the solution V̂ is
one basis of the solution of (2.6). Before proceeding, we rewrite (2.6) and (2.7)
as equivalent unitary constrained optimization problems which will facilitate our
exposition. We summarize the result into the following proposition without giving
its proof since it follows from some straightforward algebra.

PROPOSITION 2. The minimizer (2.6) is equivalent to V̂ = N−1/2
n �̂ where

�̂ = arg min
�

− tr(�T Gn�) subject to �T � = Id .(2.8)

Furthermore, Gn�̂ = �̂
n1, where 
n1 = diag(λn1, . . . , λnd). Correspondingly,
the minimizer (2.7) is equivalent to Ṽ = N−1/2

n �̃, where

�̃ = arg min
�

{− tr(�T Gn�) + ρ(N−1/2
n �)} subject to �T � = Id .(2.9)

The minimization of (2.8) and (2.9) is a Grassmann manifold optimization prob-
lem. A Grassmann manifold, which is defined as the set of all d-dimensional sub-
spaces in R

p , is the natural parameter space for the � parametrization in (2.8). For
more background on Grassmann manifold optimization, see Edelman, Arias and
Smith (1998). The traditional Grassmann manifold optimization techniques can-
not be applied directly to (2.9) due to the nondifferentiability of ρ(·). Nevertheless,
we have devised a simple and fast algorithm to solve (2.9), as discussed in the next
subsection.

2.4. Algorithm. To overcome the nondifferentiability of ρ(·), we adopt the
local quadratic approximation of Fan and Li (2001); that is, we approximate the
penalty function locally with a quadratic function at every step of the iteration as
follows.

Let Ṽ(0) = (ṽ(0)
1 , . . . , ṽ(0)

p )T = N−1/2
n �̃(0) be the starting value. The uncon-

strained first derivative of ρ(V) with respect to the p × d matrix V is given by

∂ρ

∂V
= diag

(
θ1

‖v1‖2
, . . . ,

θi

‖vi‖2
, . . . ,

θp

‖vp‖2

)
V.
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Following Fan and Li, the first derivative of ρ(V) around Ṽ(0) can be approxi-
mated by

∂ρ

∂V
≈ diag

(
θ1

‖ṽ(0)
1 ‖2

, . . . ,
θi

‖ṽ(0)
i ‖2

, . . . ,
θp

‖ṽ(0)
p ‖2

)
V := H(0)V.

By using the second-order Taylor expansion and some algebraic manipulation, we
have

ρ(V) ≈ 1
2 tr

(
VT H(0)V

) + C0 = 1
2 tr

(
�T N−1/2

n H(0)N−1/2
n �

) + C0,

where C0 stands for a constant with respect to V.
Then find �̃(1) by minimizing:

− tr(�T Gn�) + 1
2 tr

(
�T N−1/2

n H(0)N−1/2
n �

)
= tr

{
�T (−Gn + 1

2N−1/2
n H(0)N−1/2

n

)
�

}
.

This minimization problem can be easily solved by the eigensystem analysis of
the matrix Gn − 2−1N−1/2

n H(0)N−1/2
n , that is, the columns of �̃(1) are the first

d principal component directions of Gn − 2−1N−1/2
n H(0)N−1/2

n . Next, let Ṽ(1) =
N−1/2

n �̃(1) and start the second round of approximation of ρ(V). The procedures
repeat until it converges. During the iterations, if ‖ṽ(k)

i ‖2 ≈ 0, say ‖ṽ(k)
i ‖2 < ε

where ε is a prespecified small positive number (e.g., ε = 10−6), then the variable
xi is removed.

With respect to the choice of the initial values �̃(0), a simple but effective so-
lution is to use �̃(0) = �̂, the minimizer of (2.8). With �̂ as the initial values, we
found that the frequency of nonconvergence is negligible in all of our simulation
studies and the convergence is quite fast, usually requiring a few dozen iterations.
A Matlab interface was used to implement this CISE algorithm. The programs can
be obtained from the first author upon request.

2.5. Oracle property. In what follows, without loss of generality, we assume
that only the first q predictors are relevant to the regression, where d ≤ q < p.
Given a p × d matrix K, K(q) and K(p−q) indicate the sub-matrices consisting of
its first q and remaining p − q rows. If K is p × p, then the notation indicates
its first q and the last p − q block sub-matrices. In the context of the single-index
model, Fan and Li (2001) and Zou (2006) have shown that, with the proper choice
of the penalty functions and regularization parameters, the penalized likelihood
estimators have the oracle property. With continuous penalty functions, the coeffi-
cient estimates that correspond to insignificant predictors must shrink toward 0 as
the penalty parameter increases, and these estimates will be exactly 0 if that para-
meter is sufficiently large. In this section, we present theorems which establish the
oracle property of CISE.
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Let an = max{θj , j ≤ q} and bn = min{θj , j > q}, where the θj ’s are the
penalty parameters defined in Section 2.2, let λ1 ≥ · · · ≥ λp ≥ 0 denote the eigen-
values of G, and define the matrix norm ‖V‖s = √

tr(VT V). We also require a
metric D in the set of all subspaces of R

p .

DEFINITION 1. The distance between the subspaces spanned by the columns
of Vn and V, denoted as D(Vn,V), is defined as the square root of the largest
eigenvalue of

(PVn
− PV)T (PVn

− PV).

This distance criterion was first used by Li, Zha and Chiaromonte (2005) in
the sufficient dimension reduction setting. See Gohberg, Lancaster and Rodman
(2006) for more details. We use the following assumptions to establish the oracle
property.

ASSUMPTION 1. Let V0 denote the minimizer of (2.6) when the population
matrices M and N are used in place of Mn and Nn. Then V0(p−q) = 0.

ASSUMPTION 2. Mn = M + Op(n−1/2) and Nn = N + Op(n−1/2).

Given some mild method-specified conditions, the minimizer of (2.6) V̂ is a
consistent estimator of a basis of the central subspace. For example, SIR provides
the consistent estimate of the central subspace given that the linearity and coverage
conditions hold [Cook (1998a), Chiaromonte, Cook and Li (2002)]. Consequently,
the population version V0 will be a basis of the central subspace. Therefore, As-
sumption 1 is a reasonable one which facilitates our following presentations. As-
sumption 2 is mild and typically holds. These two assumptions suffice for our main
results.

We state our theorems here, but their proofs are relegated to the Appendix. The
constrained objective function in the minimization problem (2.7) is denoted as
Q(V;Mn) := f (V;Mn) + ρ(V) where f (V;Mn) = − tr(VT MnV). The first the-
orem establishes existence of CISE.

THEOREM 1. If Assumptions 1 and 2 hold, λd > λd+1 and
√

nan
p→ 0, then

there exists a local minimizer Ṽn of Q(V;Mn) subject to VT NnV = Id , so that

D(Ṽn,V0) = Op(n−1/2).

It is clear from Theorem 1 that by choosing the θi’s properly, there exists a root-
n consistent CISE. The next transition theorem states an oracle-like property of
CISE.
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THEOREM 2. If Assumptions 1 and 2 hold, λd > λd+1,
√

nan
p→ 0 and√

nbn
p→ ∞, then the root-n consistent local minimizer Ṽn in Theorem 1 must

satisfy:

(i) Pr(Ṽn(p−q) = 0) → 1,
(ii)

√
nD(Ṽn(q), V̂n(O)) = op(1), where V̂n(O) is the minimizer of Q(V;

Mn(q)) subject to VT Nn(q)V = Id .

Theorem 2(i) states that with probability tending to 1, all of the zero row of
V0 must be estimated as 0. Theorem 2(ii) tells us that there exist a local mini-
mizer Ṽn so that the difference between its nonzero submatrix Ṽn(q) and V̂n(O)

is of order op(n−1/2). That is to say, we have the result that
√

nD(Ṽn(q),V0(q))

has the same asymptotic distribution as
√

nD(V̂n(O),V0(q)). With respect to the
asymptotic distribution of V̂n(O), there seems to be no general result in the litera-
ture because different specifications on Mn(q) and Nn(q) yield different asymptotic
distributions. This is not of great interest here and we refer to Zhu and Ng (1995),
Li and Zhu (2007) and the references therein.

The second part of Theorem 2 is actually valid in a generalized sense. The
OSDRE in the exact oracle property, denoted as V̇n(O), is obtained by using
the q × q Mn and Nn formed with the first q variables (denoted as Mn(O) and
Nn(O)). Usually, Nn(O) = Nn(q). From the definition, it is straightforward to see
that Mn(O) = Mn(q) for the PCA, SIR and PFC methods. Thus, in these cases,
Theorem 2 establishes the exact oracle property. We conjecture that Mn(O) should
be very close to Mn(q) for any SDR method that satisfies Assumptions 1 and 2.
From the proof of Theorem 2(ii), we can conclude that if∥∥Mn(O) − Mn(q)

∥∥
s = Op(an),(2.10)

the exact oracle property still holds. The next result establishes that the condition
above holds for DR and SAVE under certain conditions.

PROPOSITION 3. Suppose the linearity and constant variance conditions [Li
and Wang (2007)] hold and (nan)

−1 = Op(1). Then condition (2.10) is satisfied
for the DR and SAVE methods.

By this proposition, Theorem 2 and the discussion above, we know that from as-
ymptotic viewpoints CISE is effective for all of the commonly used SDR methods.
We summarize this major result in the following theorem.

THEOREM 3. Assume that the conditions in Theorem 2 and Proposition 3
hold. Then the exact oracle property is achieved for the PCA, SIR, PFC, SAVE and
DR methods. That is, Ṽn has the selection consistency and

√
nD(Ṽn(q),V0(q)) has

the same asymptotic distribution as
√

nD(V̇n(O),V0(q)).

In this paper, we make no attempt to further analysis general conditions for the
validity of (2.10), but we think that such studies certainly warrant future research.
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2.6. Choice of tuning parameters. We recommend using

θi = θ ‖̂vi‖−r
2 ,(2.11)

where v̂i is the ith row vector of the OSDRE V̂ defined in (2.6), and r > 0 is some
pre-specified parameter. Following the suggestions of Zou (2006), r = 0.5 is used
in both the simulation study and the illustration in Section 4. Such a strategy effec-
tively transforms the original p-dimensional tuning parameter selection problem
into a univariate one. By Lemma 2 in the Appendix, v̂i is root-n consistent. Thus,
it is easily to verify that the tuning parameter defined in (2.11) satisfies the condi-
tions on an and bn needed by Theorem 2 as long as

√
nθ → 0 and n(1+r)/2θ → ∞.

Hence, it suffices to select θ ∈ [0,+∞) only.
To choose the tuning parameter θ , we use the following criterion which has a

form similar to ones used by Li (2007) and Leng and Wang (2009):

− tr(ṼT
θ MnṼθ ) + γ · dfθ ,

where Ṽθ denotes the solution for V given θ , dfθ denotes the effective number of
parameters, and γ = 2/n for AIC-type and γ = log(n)/n for BIC-type criteria.
Following the discussion of Li (2007), we estimate dfθ by (pθ − d) · d where pθ

denotes the number of nonzero rows of Ṽθ because we need (pθ − d) · d parame-
ters to describe a d-dimensional Grassmann manifold in R

pθ [Edelman, Arias and
Smith (1998)].

3. Simulation studies. We report the results of four simulation studies in this
section, three of which were conducted using forward regression models and one
was conducted using an inverse regression model. We compared our method with
the C3 method [Zhou and He (2008)] and the SSIR method [Ni, Cook and Tsai
(2005)]. BIC and RIC [Shi and Tsai (2002)] were used in SSIR to select the tuning
parameters, and two α levels (0.01 and 0.005) were used in the C3 method. We
used SIR and PFC to generate Mn and Nn for CISE selection. For these methods,
denoted CIS-SIR and CIS-PFC, we report only the results using the BIC criterion
to select tuning parameters as we tend to believe that BIC has consistency property.
Unreported simulations using the RIC criterion show slightly better performance
in some cases though.

In each study, we generated 2500 datasets with the sample size n = 60 and
n = 120. For the C3 method, the quadratic spline with four internal knots was
used, as suggested by Zhou and He (2008). Six slices were used for the SSIR
method. We calculated Mn in the PFC model setting using f (y) = (|y|, y, y2)T

for all simulation studies.
We used three summary statistics—r1, r2 and r3—to assess how well the meth-

ods select variables: r1 is the average fraction of nonzero rows of Ṽ associated
with relevant predictors; r2 is the average fraction of zero rows of Ṽ associated
with irrelevant predictors; and r3 is the fraction of runs in which the methods se-
lect both relevant and irrelevant predictors exactly right.
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STUDY 1.

y = x1 + x2 + x3 + 0.5ε,

where ε ∼ N(0,1), x = (x1, . . . , x24)
T ∼ N(0,�) with �ij = 0.5|i−j | for 1 ≤

i, j ≤ 24, and x and ε are independent. In this study, the central subspace is
spanned by the direction β1 = (1,1,1,0, . . . ,0)T with twenty-one zero coeffi-
cients.

STUDY 2.

y = x1 + x2 + x3 + 2ε,

where ε ∼ N(0,1), x = (x1, . . . , x24)
T ∼ N(0,�) with �ij = 0.5|i−j | for 1 ≤

i, j ≤ 24, and x and ε are independent. In this study, the central subspace is
spanned by the direction β1 = (1,1,1,0, . . . ,0)T with twenty-one zero coeffi-
cients. In short, this study was identical to the first, except the error was increased
by a factor of 4.

STUDY 3.

y = x1/{0.5 + (x2 + 1.5)2} + 0.2ε,

where ε ∼ N(0,1), x = (x1, . . . , x24)
T ∼ N(0,�) with �ij = 0.5|i−j | for 1 ≤

i, j ≤ 24, and x and ε are independent. In this study, the central subspace is
spanned by the directions β1 = (1,0, . . . ,0)T and β2 = (0,1, . . . ,0)T .

STUDY 4.

x = �(y, y2)T + �1/2ε,

where ε ∼ N(0, I24), y ∼ N(0,1), ij = 0.5|i−j | for 1 ≤ i, j ≤ 24, and y and
ε are independent. The first column of � is (0.5,0.5,0.5,0.5,0, . . . ,0)T and the
second column of � is (0.5,−0.5,0.5,−0.5,0, . . . ,0)T . In this study, the central
subspace is the column space of �−1�.

The simulation results from these four studies are summarized in Tables 2–5, re-
spectively. The standard errors of the rk’s,

√
rk(1 − rk)/50, are typically less than

0.01 throughout this section. In Study 1, the signal-to-noise ratio is close to 5 (the
ratio of the stand deviation of x1 + x2 + x3 to 0.5). Because of the large signal-to-
noise ratio, all the considered methods show very good performance, but CIS-SIR,
CIS-PFC and C3 perform slightly better than SSIR. In Study 2, we decreased the
signal-to-noise ratio to about 1.2 and now CIS-SIR and CIS-PFC perform much
better than C3 and SSIR. In both Studies 3 and 4, CISE is generally superior to the
other two methods, especially for CIS-PFC and the rate r3. It should be pointed out
that the superiority of CISE becomes more significant when n gets larger. When
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TABLE 2
Summary of Study 1

Method: CIS-SIR CIS-PFC C3 SSIR

Criterion: BIC BIC α = 0.01 α = 0.005 BIC RIC

Sample size n = 60

r1 0.991 1.000 1.000 1.000 0.993 0.974
r2 0.999 1.000 0.999 0.999 0.997 0.999
r3 0.970 1.000 0.978 0.991 0.939 0.914

Sample size n = 120

r1 1.000 1.000 1.000 1.000 1.000 1.000
r2 1.000 1.000 1.000 1.000 0.999 1.000
r3 1.000 1.000 1.000 1.000 0.994 1.000

TABLE 3
Summary of Study 2

Method: CIS-SIR CIS-PFC C3 SSIR

Criterion: BIC BIC α = 0.01 α = 0.005 BIC RIC

Sample size n = 60

r1 0.713 0.795 0.583 0.565 0.770 0.706
r2 0.988 0.992 0.998 0.998 0.881 0.939
r3 0.233 0.399 0.075 0.080 0.058 0.104

Sample size n = 120

r1 0.909 0.951 0.669 0.615 0.973 0.930
r2 0.998 0.998 1.000 1.000 0.928 0.981
r3 0.694 0.827 0.209 0.131 0.244 0.554

TABLE 4
Summary of Study 3

Method: CIS-SIR CIS-PFC C3 SSIR

Criterion: BIC BIC α = 0.01 α = 0.005 BIC RIC

Sample size n = 60

r1 0.789 0.906 0.770 0.742 0.934 0.888
r2 0.965 0.979 0.948 0.955 0.633 0.828
r3 0.344 0.588 0.229 0.226 0.000 0.004

Sample size n = 120

r1 0.948 0.995 0.839 0.781 0.994 0.983
r2 0.992 0.998 0.956 0.963 0.664 0.865
r3 0.838 0.973 0.309 0.245 0.001 0.027
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TABLE 5
Summary of Study 4

Method: CIS-SIR CIS-PFC C3 SSIR

Criterion: BIC BIC α = 0.01 α = 0.005 BIC RIC

Sample size n = 60

r1 0.676 0.817 0.670 0.643 0.871 0.776
r2 0.968 0.989 0.956 0.958 0.641 0.832
r3 0.069 0.327 0.022 0.029 0.000 0.000

Sample size n = 120

r1 0.805 0.928 0.828 0.809 0.988 0.964
r2 0.993 0.998 0.967 0.969 0.696 0.890
r3 0.299 0.687 0.147 0.178 0.000 0.000

n = 120, C3 still cannot perform exact identifications well, while SSIR rarely iden-
tifies all relevant and irrelevant variables correctly.

While both CISE and C3 have the oracle property, they differ in many aspects.
CISE is a unified method that can be applied to many popular sufficient dimension
reduction methods, including PCA, PFC, SIR, SAVE and DR. On the other hand,
C3 is based on one specified sufficient dimension reduction method, canonical
correlation [Fung et al. (2002)]. We regard r3, the estimated probability all relevant
and irrelevant variables are identified correctly, as the most important aspect of a
method. On that measure CISE typically dominates C3. There was only one case
(Table 1, n = 60) in which C3 did slightly better than CISE. Additionally, CISE
seems conceptually simpler and is easily implemented.

4. Boston housing data.

4.1. Variable screening. We applied our method to the Boston housing data,
which has been widely studied in the literature. The Boston housing data contains
506 observations, and can be downloaded from the web site http://lib.stat.cmu.
edu/datasets/boston_corrected.txt. The response variable y is the median value of
owner-occupied homes in each of the 506 census tracts in the Boston Standard
Metropolitan Statistical Areas. The 13 predictor variables are per capita crime rate
by town (x1); proportion of residential land zoned for lots over 25,000 sq.ft (x2);
proportion of nonretail business acres per town (x3); Charles River dummy vari-
able (x4); nitric oxides concentration (x5); average number of rooms per dwelling
(x6); proportion of owner-occupied units built prior to 1940 (x7); weighted dis-
tances to five Boston employment centers (x8); index of accessibility to radial
highways (x9); full-value property-tax rate (x10); pupil–teacher ratio by town (x11);
proportion of blacks by town (x12); percentage of lower status of the popula-
tion (x13).

http://lib.stat.cmu.edu/datasets/boston_corrected.txt
http://lib.stat.cmu.edu/datasets/boston_corrected.txt
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TABLE 6
Estimated bases of the central subspace in Boston housing data

Method: CIS-SIR CIS-PFC C3 SSIR-BIC SSIR-RIC

x1 0 0 0 0 0 0 −0.050 −0.131 −0.041 −0.123
x2 −0.004 −0.047 0 0 0 0 −0.001 −0.002 −0.001 −0.001
x3 0 0 0 0 0 0 0.001 0.005 0 0
x4 0 0 0 0 0 0 −0.033 0.020 0 0
x5 0 0 0 0 0 0 0.719 −0.882 0.543 −0.765
x6 −0.999 0.034 −0.999 0.034 0.962 −0.645 −0.684 −0.448 −0.834 −0.627
x7 −0.008 −0.139 −0.003 −0.077 −0.174 −0.096 0.006 −0.001 0.005 −0.001
x8 0 0 0 0 0 0 0.082 −0.012 0.060 −0.010
x9 0 0 0 0 0 0 −0.019 0.035 −0.016 0.033
x10 −0.001 −0.01 −0.002 −0.035 −0.166 0 0.001 −0.001 0.001 −0.001
x11 0.021 −0.361 0.018 −0.280 −0.126 0 0.058 −0.033 0.055 −0.036
x12 0.001 0.011 0.002 0.035 0 0 −0.000 0.000 0 0
x13 −0.044 −0.920 −0.040 −0.955 0 −0.758 0.014 −0.043 0.017 −0.059

Previous studies suggested that we remove those observation with crime rate
greater than 3.2, as a few predictors remain constant except for 3 observations in
this case [Li (1991)]. So we used the 374 observations with crime rate smaller
than 3.2 in this analysis. All the methods considered in Section 3 were applied
to this dataset. Scatter-plotting of each predictor against y, we concluded that it
would be sufficient to use f = (

√
y, y, y2)T in the PFC model. Since PFC is a

scale-invariant method, we did not standardize the data as many other methods
do. Similar to the previous studies in the literature, we pick up two directions to
estimate the central subspace. The estimated bases of the central subspace for all
the considered methods are summarized in Table 6.

The coefficients in Table 6 from CIS-SIR, CIS-PFC and SSIR are based on the
original dataset, while the coefficients of C3 is based on a data-specific weighted
version [Zhou and He (2008)]. As suggested by CIS-PFC, explanatory variables
x6, x7, x10, x11, x12 and x13 would be important in explaining y.

4.2. Bootstrap study. In Table 7, we used the bootstrap to assess the accuracy
of variable selection for all methods except C3, as it is not clear how the weighting

TABLE 7
Variable selection in bootstrapping Boston housing data

Method: CIS-SIR CIS-PFC SSIR-BIC SSIR-RIC

r1 0.947 0.962 0.963 0.877
r2 0.969 0.980 0.780 0.952
r3 0.550 0.672 0.118 0.264



SPARSE SUFFICIENT DIMENSION REDUCTION 3711

procedure used by Zhou and He should be automated. Without weighting we en-
countered serious convergence problems in the C3 algorithm. This bootstrap study
can be considered as another simulation study.

The bootstrap procedure was conducted as follows. First, we randomly chose
with replacement 374 observations for y jointly with x6, x7, x10, x11, x12 and x13.
Secondly, we separately randomly selected 374 observations for x1, x2, x3, x4, x5,
x8 and x9. Then we combine them to make one complete bootstrap dataset. In this
way, we mimic the results of the analysis of original data, forcing x1, x2, x3, x4, x5,
x8 and x9 to be irrelevant. This procedure was repeated 2500 times. The resulting
rates r1, r2 and r3 are shown in Table 7. The results show a pattern similar to those
in simulation studies and again CISE performed quite well.

5. Discussion. The establishment of the oracle property in this paper takes
advantage of the simple trace form of the objective function: − tr(VT MnV). How-
ever we believe that the proof in the Appendix can be extended to more general
objective functions. Moreover, it is also of great interests to see whether CISE and
its oracle property are still valid in high-dimensional settings in which p > n.

We have seen that Nn usually takes the form of the marginal sample covariance
matrix of x, while Mn depends on the specific method. In practice, how to choose
Mn for variable selection is an important issue and merits thorough investigation.
In addition, it is well demonstrated that for the multiple regression model, the BIC
criterion tends to identify the true sparse model well if the true model is included in
the candidate set [Wang, Li and Tsai (2007)]. The consistency of the BIC criterion
proposed in Section 2.6 deserves further study as well.

APPENDIX

Throughout this section, we will use the following notation for ease of exposi-
tion. Q(�;Gn,Nn) := − tr(�T Gn�) + ρ(N−1/2

n �) denotes the constrained objec-
tive function in the minimization problem (2.9). Unless otherwise stated, we also
use the generic notation Q(�) or Q(V) to represent the function Q(�;Gn,Nn) or
Q(V;Mn) for abbreviation, which should not cause any confusion. 1i denotes a
row vector with one in the ith position and zero in the others.

PROOF OF PROPOSITION 1. Cook (2007) has shown that the maximum like-
lihood estimator of span(�−1�) in the general PFC model equals the span of
{e1, . . . , ed}, where ei = �

−1/2
n ri and ri is the ith eigenvector of �

−1/2
n �̂fit�

−1/2
n

corresponding to the eigenvalue ki . Consequently, we have

�̂fitei = ki�nei .

It follows that Mn = �̂fit and Nn = �n. �



3712 X. CHEN, C. ZOU AND R. D. COOK

In order to prove the theorems, we first state a few necessary lemmas. For nota-
tion convenience, we need the following additional definitions. Define the Stiefel
manifold St(p, d) as

St(p, d) = {� ∈ R
p×d :�T � = Id}.

Denotes ��� as the subspace spanned by the columns of �, then ��� ∈ Gr(p, d)

where Gr(p, d) stands for the Grassmann manifold. The projection operator
R : Rp×d → St(p, d) onto the Stiefel manifold St(p, d) is defined to be

R(�) = arg min
W∈St(p,d)

‖� − W‖2
s .

The tangent space T�(p, d) of � ∈ St(p, d) is defined by

T�(p, d) = {
Z ∈ R

p×d : Z = �A + �⊥B,
(A.1)

A ∈ R
d×d,A + AT = 0,B ∈ R

(p−d)×d}
,

where �⊥ ∈ R
p×(p−d) is the complement of � satisfies [��⊥]T [��⊥] = Ip .

LEMMA 1. If Z ∈ T�(p, d),� ∈ St(p, d), we have:

(i) For any symmetric matrix C ∈ R
d×d , tr(ZT �C) = 0.

(ii) R(� + tZ) = � + tZ − (1/2)t2�ZT Z + O(t3).

This lemma comes from Lemma 10 and Proposition 12 of Manton (2002).

LEMMA 2. Under conditions in Theorem 1, we have

D(�̂,�0) = Op(n−1/2),

where �0 denotes any minimizer of (2.8) when Gn is taken as the population ma-
trix G.

This lemma can be proved in a similar fashion to the proof of Theorem 1 and
hence omitted here.

PROOF OF THEOREM 1. Clearly, to prove this theorem is equivalent to show
there exists a local minimizer �̃n of Q(�;Gn,Nn) subject to �T � = Id , so that

D(�̃n,�0) = Op(n−1/2).

Denote �∗ as an orthonormal basis matrix of the subspace spanned by the columns
of N1/2

n V0. Thus, there exists a positive-definite matrix O ∈ R
d×d so that �∗ =

N1/2
n V0O. By Assumption 2 and VT

0 NV0 = Id , we have

OT O = Id + Op(n−1/2).
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Note that �0 = N1/2V0, and thus it is equivalent to show that

D(�̃n,�∗) = Op(n−1/2),

since D(�∗,�0) = Op(n−1/2) and D(·, ·) satisfies the triangle inequality.
To ease demonstration, we need define the concept of the neighborhood of ��∗�.

For an arbitrary matrix W ∈ R
p×d and scaler δ ∈ R, the perturbed point around �∗

in Stiefel manifold can be expressed by R(�∗ + δW). The perturbed point around
��∗� in Grassmann manifold can be expressed by �R(�∗ + δW)�. According to
Lemma 8 of Manton (2002), W can be uniquely decomposed as

W = �∗A + �∗⊥B + �∗C,

where A ∈ R
d×d is a skew-symmetric matrix, B ∈ R

(p−d)×d is an arbitrary ma-
trix, and C ∈ R

d×d is a symmetric matrix. Let Z = �∗A + �∗⊥B. Obviously,
Z ∈ T�∗(p, d). Henceforth, Z refers to the projection of an arbitrary matrix
W ∈ R

p×d onto the tangent space T�∗(p, d), unless otherwise stated.
From Proposition 20 of Manton (2002), it is straightforward to see

�R(�∗ + δW)� = ⌊
R

(
�∗ + δ(�∗A + �∗⊥B + �∗C)

)⌋
= ⌊

R
(
�∗

(
Id + δ(A + C)

) + δ�∗⊥B
)⌋

= ⌊
�∗

(
Id + δ(A + C)

) + δ�∗⊥B
⌋

= ⌊
�∗ + δ�∗⊥B

(
Id + δ(A + C)

)−1⌋
= �R(�∗ + δ�∗⊥B′)�,

provided that δ is sufficiently small so that Id + δ(A + C) is a full rank matrix,
where B′ = B(Id +δ(A+C))−1. Since B ∈ R

(p−d)×d is an arbitrary matrix and we
do not need the specific form of B and B′ in our proof, we only use B for notation
convenience. This tells us that the movement from ��∗� in the near neighborhood
only depends on the �∗⊥B. In other words, it suffices to only consider perturbed
points like R(�∗ +δZ) in the following proofs, where ‖B‖s = C for some given C.
It is worth noting that though our problems essentially are Grassmann manifold
optimization, we prove the theorem in a more general way, say in Stiefel manifold
[using Z ∈ T�∗(p, d)] since the latter has simpler matrix expressions and thus is
more notationally convenient.

For any small ε, if we can show that there exits a sufficiently large constant C,
such that

lim
n

Pr
(

inf
Z∈T�∗ (p,d) : ‖B‖s=C

Q
(
R(�∗ + n−1/2Z)

)
> Q(�∗)

)
> 1 − ε,(A.2)

then we can conclude that there exists a local minimizer �̃n of Q(�) with arbitrar-
ily large probabilities such that ‖�̃n − �∗‖s = Op(n−1/2). This certainly implies
that D(�̃n,�∗) = Op(n−1/2) by Definition 1.
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By using Lemma 1, for Z ∈ T�∗(p, d) we have

n
{
Q

(
R(�∗ + n−1/2Z)

) − Q(�∗)
}

= [− tr(ZT GnZ) − 2
√

n tr(ZT Gn�∗) + tr(ZT Z�T∗ Gn�∗)
](

1 + op(1)
)

+ n

p∑
j=1

[
θj

∥∥∥∥1j N−1/2
n

(
�∗ + n−1/2Z − 1

2
n−1�∗ZT Z

)∥∥∥∥
2

− θj‖1j N−1/2
n �∗‖2

](
1 + op(1)

)
≥ [− tr(ZT GnZ) − 2

√
n tr(ZT Gn�∗) + tr(ZT Z�T∗ Gn�∗)

](
1 + op(1)

)
+ n

q∑
j=1

[
θj

(∥∥∥∥1j N−1/2
n

(
�∗ + n−1/2Z − 1

2
n−1�∗ZT Z

)∥∥∥∥
2

− ‖1j N−1/2
n �∗‖2

)](
1 + op(1)

)
≥ [− tr(ZT GnZ) + tr(ZT Z�T∗ Gn�∗) − 2

√
n tr(ZT Gn�∗)

](
1 + op(1)

)
− 1

2
q
(√

nan

)
× max

j

{‖1j N−1/2
n �∗‖−1

2 · ∥∥1j N−1/2
n

(
Z − (1/2)n−1/2�∗ZT Z

)∥∥
2

}
= (1 + 2)

(
1 + op(1)

)
,

where the second inequality holds because 1j N−1/2
n �∗ = 0 for any j > q by As-

sumption 1, and the last inequality comes from first-order Taylor expansion and

the definition of an. In addition, according to the theorem’s condition
√

nan
p→ 0,

we known that 2 is op(1). Furthermore, based on Lemma 1 and Assumption 2,
we have

√
n tr(ZT Gn�∗) = √

n tr(ZT G�0O) + √
n tr

(
ZT (GnN1/2

n N−1/2 − G)�0O
)

= √
n tr(ZT �0
1O) + √

n tr
(
ZT (Gn − G)�0O

)
+ √

n tr(ZT Gn�0O) · Op(n−1/2)

= √
n tr

(
ZT (Gn − G)�0O

) + Op(n−1/2)

= √
n tr

(
AT �T

0 (Gn − G)�0O
)

+ √
n tr

(
BT �T

0⊥(Gn − G)�0O
) + Op(n−1/2)

= √
n tr

(
BT �T

0⊥(Gn − G)�0
)(

1 + Op(n−1/2)
)
,
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where 
 = diag{
1,
2} is the diagonal eigenvalue matrix of G with the first d ×d

sub-matrix 
1. By using the definition of Z in (A.1), we get

tr(ZT Z�T∗ Gn�∗) − tr(ZT GnZ) = tr(ZT ZO�T
0 G�0O) − tr(ZT GZ) + Op(n−1/2)

= tr(ZT Z
1) − tr(ZT GZ) + Op(n−1/2)

= tr(AT A
1) + tr(BT B
1) − tr(BBT 
2)

− tr(AAT 
1) + op(1)

≥ (λd − λd+1)‖B‖2
s ,

where we use the fact tr(AT A
1)− tr(AAT 
1) = 0 because A is skew-symmetric.
Here the last inequality follows from basic properties of trace operator for semi-
positive definite matrix. As a consequence, by the Cauchy–Schwarz inequality for
trace operator, the third term in 1 is uniformly bounded by ‖B‖s × ‖√n(Gn −
G)�0‖s . Therefore, as long as the constant C is sufficiently large, the first two
terms in 1 will always dominate the third term and 2 with arbitrarily large
probabilities. This implies inequality (A.2), and the proof is complete. �

PROOF OF THEOREM 2. (i) To prove this part, we need represent (2.7) as
vector forms. Define

t = (tT1 , . . . , tTd )T ,

hl(t) = tT Clt, l = 1, . . . , d,

hkl(t) = tT Cklt, (k, l) ∈ J ,

J = {(k, l)|k, l = 1, . . . , d, k < l},
where ti denotes the ith column vector of V, Cl’s are pd × pd block-diagonal
matrices, Ckl’s pd ×pd block matrices, Cl and Ckl contain Nn in the lth diagonal
block and in the (k, l) as well as (l, k) blocks, respectively. The pd×pd symmetric
matrices Ckl are defined for all the pairs of different indices belonging to J , given
by the d(d − 1)/2 combinations of the indices 1, . . . , d .

By this notation, we have

Q(�) := Q∗(t) = −tT At +
p∑

i=1

θi‖vi‖2,

where A is a pd × pd block-diagonal matrix with all diagonal blocks Mn. Of
course, in the above equation each vi is regarded as a function of t.

By using the equality representation of the compact Stiefel manifolds St(p, d),
(2.7) is equivalent to

min
t

−
{

tT At +
p∑

i=1

θi‖vi‖2

}
(A.3)

subject to hl(t) = 1, l = 1 ∈ [1, d] and hkl(t) = 0, (k, l) ∈ J .
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As a consequence, this enables us to apply an improved global lagrange multiplier
rule proposed by Rapcsák (1997).

We start by supposing that ṽj �= 0 for all j . According to Theorem 15.2.1 in
Rapcsák (1997) [or Theorem 3.1 in Rapcsák (2002)], a necessary condition that
t̃n (Ṽn) is a local minimum of (A.3) [equation (2.7)] is that, the geodesic gradient
vector of the improved Lagrangian function of (A.3) evaluated at t̃n equals to zero.
That is,

∂gQ∗(t)
∂t

∣∣∣∣
t=t̃n

≡
[
∂Q∗(t)

∂t
− U(U′U)−1U

∂Q∗(t)
∂t

]∣∣∣∣
t=t̃n

(A.4)

:= ∂gf (Vn)

∂t

∣∣∣∣
t=t̃n

+ ∂gρ(Vn)

∂t

∣∣∣∣
t=t̃n

= 0,

where

U = (C1t, . . . ,Cdt,C12t,C13t, . . . ,Cd−1dt)

is a (pd × [d(d + 1)/2])-dimensional matrix, and ∂gf (Vn)/∂t and ∂gρ(Vn)/∂t
are defined in a similar form of ∂gQ∗(t)/∂t by replacing Q∗ with f and ρ, respec-
tively. By Theorem 1 and noting that ∂f (Vn)/∂t is linear in t,

∂gf (Vn)

∂t

∣∣∣∣
t=t̃n

= ∂gf (Vn)

∂t

∣∣∣∣
t=̂tn

+ Op(n−1/2),

where t̂n is the vector form of V̂n. Using Theorem 3.1 of Rapcsák (2002), we have
∂gf (Vn)/∂t|t=̂tn = 0, which yields that ∂gf (Vn)/∂t|t=t̃n = Op(n−1/2) and as a
consequence

∂gρ(Vn)/∂t|t=t̃n
= Op(n−1/2).

On the other hand,

∂gρ(Vn)

∂t

∣∣∣∣
t=t̃n

= [Ipd − U(U′U)−1U]θ̃ ≡ Hθ̃,

where

θ̃ =
(

θ1 t̃n11

‖ṽn1‖2
, . . . ,

θpt̃n1p

‖ṽnp‖2
, . . . ,

θ1 t̃nd1

‖ṽn1‖2
, . . . ,

θpt̃ndp

‖ṽnp‖2

)T

.

By using the fact that U has full column rank and HU = 0, we know θ̃ can be
expressed through a linear combination of the columns of U in probability, that is,

θ̃ = (κ1C1 + · · · + κdCd + κ12C12 + κ13C13 + · · · + κd−1dCd−1d)
‖θ̃‖2

‖t̃n‖2
t̃n

+ Op(n−1/2),
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where κ1, . . . , κd−1d are a sequence of constants satisfy they are not all the zeros.
Define a sequence of pd-dimensional vectors zij ’s,

zij = (0T , . . . , t̃Tni, . . . ,0T , . . . , t̃Tni, . . . ,0T )T ,

for j ≥ i, say, its [(i −1)p +1]th to the [(i −1)p +p]th elements and [(j −1)p +
1]th to the [(j − 1)p + p]th elements are both t̃ni . It is straightforward to see

κ0κi = zT
ii θ̃ + Op(n−1/2),

(A.5)
κ0(κi + κij ) = zT

ij θ̃ + Op(n−1/2) for j > i,

where we denote κ0 = ‖θ̃‖2/‖t̃n‖2. By Theorem 1, ṽnj = Op(n−1/2) for j > q .
Thus, by recalling the theorem’s condition on an and bn, it can be easily verified
that (A.5) leads to

κi + κij = κ−1
0

(
zT
ij θ̃ + Op(n−1/2)

)
≤ Op(b−1

n ) · Op(an + bnn
−1/2 + n−1/2)

= op(1).

Similarly, κi = op(1). Consequently, we can conclude all the κi and κij equal to
zero in probability which yields contradiction. As a result, with probability tending
to 1 (w.p.1), (A.4) cannot hold, which implies there exists j > q so that

Pr(ṽnj = 0) → 1.

Without loss of generality, we assume Pr(ṽnp = 0) → 1. Let Mn1 and Nn1 be
the first (p − 1) × (p − 1) sub-matrices of Mn and Nn, respectively, and Ṽn1 be
the first p−1 rows of Ṽn. As stated before, Ṽn is a local minimum of the objective
function

Q(V;Mn) = − tr(VT MnV) +
p∑

i=1

θi‖vi‖2 subject to VT NnV = Id .

We will show that w.p.1 Ṽn1 is also a local minimum of the objective function

Q(V1;Mn1) = − tr(V1
T Mn1V1) +

p−1∑
i=1

θi‖vi‖2

(A.6)
subject to V1

T Nn1V1 = Id,

w.p.1. Denote the set A1 = {V1|‖V1 − Ṽn1‖s < δ;VT
1 Nn1V1 = Id}. For any A1 ∈

A1, denote A = (AT
1 ,0T )T . It is clear that AT NnA = Id . Given δ small enough,

we will have Q(A;Mn) ≥ Q(Ṽn;Mn) since Ṽn is the local minimum. Note that
Q(A;Mn) = Q(A1;Mn1) and Q(Ṽ;Mn) = Q(Ṽn1;Mn1) w.p.1. Consequently,
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we have

Q(A1;Mn1) ≥ Q(Ṽn1;Mn1) w.p.1,

for all A1 ∈ A provided that δ is sufficiently small. Hence, we can conclude that
Ṽn1 is also a local minimum of the objective function Q(V1;Mn1) w.p.1.

Rewriting (A.6) as a similar form to (A.3) and following the same arguments
above in proving Pr(ṽnp = 0) → 1, we can show that there exists q < j < p so
that Pr(ṽnj = 0) → 1. The remaining proofs can be completed by deduction.

(ii) For convenience purposes, first decompose the matrix Mn and Nn into the
following block form:

Mn =
[

Mn(q) M12
M21 Mn(p−q)

]
, Nn =

[
Nn(q) N12
N21 Nn(p−q)

]
,

where Mn(q) and Nn(q) are the first q × q sub-matrices. It then follows that

f (V;Mn) = − tr
(
VT

(q)Mn(q)V(q)

) − tr
(
VT

(p−q)Mn(p−q)V(p−q)

)
.

Next we will show Ṽn(q) = V̂n(O)(1 + op(n−1/2)). Similar to the proof of Theo-
rem 1, since Ṽn(p−q) = 0 w.p.1, it suffices to show, for any arbitrarily small ε > 0,
there exits a sufficiently large constant C, such that

lim
n

inf Pr
(

inf
Z∈T�̂n(O)

(q,d) : ‖B‖s=C
Q

(
R

(
�̂n(O) + anZ

);Gn(q),Nn(q)

)
> Q

(
�̂n(O);Gn(q),Nn(q)

))
(A.7)

> 1 − ε,

where

�̂n(O) = arg min
�∈Rq×d

− tr
(
�T Gn(q)�

)
subject to �T � = Id

and Gn(q) = N−1/2
n(q) Mn(q)N

−1/2
n(q) . Note that

a−2
n

{
Q

(
R

(
�̂n(O) + anZ

);Gn(q),Nn(q)

) − Q
(
�̂n(O);Gn(q),Nn(q)

)}
≥ [− tr

(
ZT Gn(q)Z

) − 2a−1
n tr

(
ZT Gn(q)�̂n(O)

) + tr
(
ZT Z�̂T

n(O)Gn(q)�̂n(O)

)]
× (

1 + op(1)
)

− q
∥∥1j N−1/2

n(q)

(
Z − (1/2)an�̂n(O)ZT Z

)∥∥
2,

where 2a−1
n tr(ZT Gn(q)�̂n(O)) = 0 by using Lemma 2, and

− tr
(
ZT Gn(q)Z

) + tr
(
ZT Z�̂T

n(O)Gn(q)�̂n(O)

)
> 0.
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Using the similar arguments in the proof of Theorem 1, we can show (A.7) holds.
This implies that

√
n�̃n(q) is asymptotically equivalent to

√
n�̂n(O) where

�̃n(q) = arg min
�∈Rq×d

Q
(
�;Gn(q),Nn(q)

)
subject to �T � = Id,

and thus it follows that
√

nD(N1/2
n(q)Ṽn(q),N1/2

n(q)V̂n(O)) = op(1) which completes
the proof. �

PROOF OF PROPOSITION 3. To illustrate the idea, we elaborate on verifying
the condition (2.10) for DR. In this case, by equation (5) in Li and Wang (2007),
Mn can be reexpressed as

Mn = 2
{
�1/2

n Ê[V̂ar(z|ỹ) − Ip]2�1/2
n

+ �1/2
n Ê

[(
V̂ar(z|ỹ) − Ip

)
Ê(z|ỹ)Ê(zT |ỹ)

]
�1/2

n

+ �1/2
n Ê

[
Ê(z|ỹ)Ê(zT |ỹ)

(
V̂ar(z|ỹ) − Ip

)]
�1/2

n

+ �1/2
n Ê[Ê(z|ỹ)Ê(zT |ỹ)]2�1/2

n

+ �1/2
n Ê2[Ê(z|ỹ)Ê(zT |ỹ)]�1/2

n

+ �1/2
n Ê[Ê(zT |ỹ)Ê(z|ỹ)]Ê[Ê(z|ỹ)Ê(zT |ỹ)]�1/2

n

}
:= 2(Mn1 + · · · + Mn6).

Here, ỹ is the discretized y over a collection of slices, V̂ar(z|ỹ) denotes the sample
covariance matrix of z within a slice, Ê(·) denotes the weighted average across
slices. Next, we will show Mn(O)i = Mn(q)i + Op(n−1) for i = 1, . . . ,6.

Now we first deal with Mn1. Rewrite it as

Mn1 = Ê{[V̂ar(x|ỹ) − �n]�−1
n [V̂ar(x|ỹ) − �n]}.

We assume that the collection of slices is fixed; that is, it does not vary with n. This
implies that the sample conditional moments such as V̂ar(x|ỹ) are

√
n-consistent

estimates of their population-level counterparts, such as Var(x|ỹ). Let  be the
matrix consisting of the first q columns of the matrix Ip . Then, by definition,

Mn(O)1 = T Ê{[V̂ar(x|ỹ) − �n](T �n)−1T [V̂ar(x|ỹ) − �n]},

Mn(q)1 = T Ê{[V̂ar(x|ỹ) − �n]�−1
n [V̂ar(x|ỹ) − �n]}.

Let P(�n) = (T �n)−1T �n and let Q(�n) = Ip − P(�n). Then

Mn(q)1 = T Ê{[V̂ar(x|ỹ) − �n][P(�n) + Q(�n)]�−1
n

× [P(�n) + Q(�n)]T [V̂ar(x|ỹ) − �n]}
:= Ê(M1I + M1II + M1III + M1IV),
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where

M1I = T [V̂ar(x|ỹ) − �n]P(�n)�
−1
n PT

(�n)[V̂ar(x|ỹ) − �n],

M1II = T [V̂ar(x|ỹ) − �n]Q(�n)�
−1
n PT

(�n)[V̂ar(x|ỹ) − �n],

M1III = T [V̂ar(x|ỹ) − �n]P(�n)�
−1
n QT

(�n)[V̂ar(x|ỹ) − �n],

M1IV = T [V̂ar(x|ỹ) − �n]Q(�n)�
−1
n QT

(�n)[V̂ar(x|ỹ) − �n].

It can be easily seen that Ê(M1I) is exactly Mn(O)1. We will show that M1II, M1III
and M1IV are of the order Op(n−1). Note that

QT
(�n)[V̂ar(x|ỹ) − �n]

= [QT
(�) + Op(n−1/2)][V̂ar(x|ỹ) − � + Op(n−1/2)]

= QT
(�)[V̂ar(x|ỹ) − �] + Op(n−1/2).

By construction, Sy|x ⊆ span(). Under certain conditions [Cook (1998a)], we
know span{�−1[� − Var(x|y)]} ⊆ Sy|x. Hence,

span{�−1[� − Var(x|y)]} ⊆ span().

It then follows that

Q(�)�−1[Var(x|ỹ) − �] = �−1QT
(�)[Var(x|ỹ) − �] = 0.(A.8)

Thus, we have M1IV = Op(n−1/2) · Op(n−1/2) = Op(n−1).
Substituting P(�n) = Ip − Q(�n) into M1II and using Q(�n)’s idempo-

tency, we have

M1II = T [V̂ar(x|ỹ) − �n]Q(�n)Q(�n)�
−1
n [V̂ar(x|ỹ) − �n] − M1IV.

By using (A.8) again, we know that M1II = Op(n−1). Similarly, M1III = Op(n−1).
From these, we deduce that M1II, M1III, M1IV are all of order Op(n−1). Since
Ê(M1II + M1III + M1IV) is the sum of finite number of terms each of the order
Op(n−1), it is itself of this order. It follows that Mn(O)1 = Mn(q)1 + Op(n−1).

Next, let us deal with Mn2. Similar to Mn(q)1, Mn(q)2 can be divided into four
terms Mn(q)2 = Mn(O)2 + M2II + M2III + M2IV, where

M2II = T [V̂ar(x|ỹ) − �n]Q(�n)�
−1
n

× PT
(�n){[Ê(x|ỹ) − Ê(x)][Ê(xT |ỹ) − Ê(xT )]},

M2III = T [V̂ar(x|ỹ) − �n]P(�n)�
−1
n

× QT
(�n){[Ê(x|ỹ) − Ê(x)][Ê(xT |ỹ) − Ê(xT )]},

M2IV = T [V̂ar(x|ỹ) − �n]Q(�n)�
−1
n

× QT
(�n){[Ê(x|ỹ) − Ê(x)][Ê(xT |ỹ) − Ê(xT )]}.
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Under the linearity condition, we know span{[E(x|ỹ) − E(x)]} ⊆ Sy|x [Cook
(1998a)]. Hence,

span{[E(x|ỹ) − E(x)]} ⊆ span().

It then follows that

Q(�)�−1[E(x|ỹ) − E(x)] = �−1QT
(�)[E(x|ỹ) − E(x)] = 0.(A.9)

By using (A.9) and the similar arguments for Mn(q)1, we can show that M2II,
M2III and M2IV are all of order Op(n−1). Thus, we can conclude that Mn(O)2 =
Mn(q)2 + Op(n−1).

By (A.8) and (A.9), Mn(O)i = Mn(q)i +Op(n−1) for i = 3, . . . ,6, can be proved
in a similar fashion to the foregoing proofs. We omit the details here for saving
some space. It follows that for the DR method,

Mn(O) = Mn(q) + Op(n−1).

Thus, condition (2.10) is satisfied as long as (nan)
−1 = Op(1).

Note that for SAVE, Mn takes the form of Mn1 for DR. Thus, condition (2.10)
is also satisfied for SAVE. �
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