A linear SEIR epidemic model for contact networks

Sen-Zhong Huang

ZhiYing Research Center for Health Data, Nankai University, and Univ. Rostock

Abstract. For a single species, our linear model has the form

\(F'(t) = r(t)(G(t) - R(t)), \)

\(G(t) = \int_0^t F(t - s)W'(s) \, ds, \)

\(R(t) = \int_0^t G'(s)A(s, t - s) \, ds. \)

It is a SEIR model in the sense that

\(E = F - G, \quad I = G - R. \)

We extend the above model prototype to general contact networks (CN), and give some applications including controllability of epidemic spreading on contact networks.

According to our general result, the realization of a safe CN of the scale-free type (e.g., internet) is theoretically very difficult.
1. Linear SEIR model for one single species

\[
\begin{align*}
S & \xrightarrow{r_I} E \xrightarrow{W} I \xrightarrow{A} R \\
S \to E : \quad F'(t) &= \text{RoI}(t) \quad \text{with} \\
\text{RoI}(t) &:= r(t)(G(t) - R(t)), \\
E \xrightarrow{W} I : \quad G(t) &= \int_0^t F(t-s)W'(s) \, ds, \\
I \xrightarrow{A} R : \quad R(t) &= \int_0^t G'(t-s)A(t-s,s) \, ds. \\
\end{align*}
\]

(RoI = Rate of Infection)

In the above, \(F(t)/G(t)/R(t) \) is the cumulative number of exposures/infectives/recovereds that emerged within the time interval \([0, t]\).

The differences

\[
E(t) := F(t) - G(t), \quad I(t) := G(t) - R(t)
\]

give the number of exposures and active infectives at the time point \(t \).

Explanation: The value \(1 - W(t) \) is the probability that an exposed individual will remain in the exposure state after its emergence of \(t \) units of time. Similar meaning for \(A(t, s) \).
Many known models can be derived from the above model under suitable choices of W and A.

Assumptions:

(i) r is bounded.

(ii) W is a CDF on \mathbb{R}_+ with $W(0) = 0$ and

\[
(1.1a) \quad \tau := \int_{0}^{\infty} (1 - W(t)) \, dt < \infty.
\]

(mean incubation period)

(iii) For each $t \geq 0$, $A(t, \cdot)$ is a CDF on \mathbb{R}_+ with

\[
(1.1b) \quad \Sigma(t) := \int_{0}^{\infty} (1 - A(t, s)) \, ds < \infty.
\]

(time-dependent mean infectious period)
Let
\begin{equation}
R_{\text{eff}}(t) := \int_0^\infty r(t + s)(1 - A(t, s)) \, ds \quad (t \geq 0)
\end{equation}
be the effective reproductive number.

Theorem 1.1. (Controllability and Threshold) Let (F, G, R) be a solution with $F(0) > 0$, and let $F_\infty = \lim_{t \to \infty} F(t)$. We have the following assertions (i)-(ii).

(i) If there exists some $t_0 \geq 0$ such that
\begin{equation}
(1.3a) \quad R_c := \sup_{t \geq t_0} R_{\text{eff}}(t) < 1,
\end{equation}
then there holds
\begin{equation}
(1.3b) \quad F_\infty / F(t_0) \leq (M + 1 - R_c) / (1 - R_c)
\end{equation}
with $M := \sup_{t \geq 0} R_{\text{eff}}(t)$.

(ii) (Epidemic spreading into infinity) If
\begin{equation}
(1.4a) \quad R_{\text{eff}}(t) \geq 1 \quad \forall t \geq 0,
\end{equation}
then
\begin{equation}
(1.4b) \quad F_\infty = \infty.
\end{equation}

Basic reproductive number R_0: If $r \equiv \beta$, $\Sigma \equiv \sigma$, then
\begin{equation}
(1.5) \quad R_{\text{eff}}(t) \equiv R_0 := \beta \times \sigma.
\end{equation}
Figure 1. Modeling of SARS in China 2002-2003

<table>
<thead>
<tr>
<th>Region</th>
<th>τ (95%, 99%)</th>
<th>σ (95%, 99%)</th>
<th>β</th>
<th>θ (%)</th>
<th>R_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HK</td>
<td>6.945 (16.0, 24.8)</td>
<td>12.191 (37.3, 61.5)</td>
<td>0.298</td>
<td>11.0</td>
<td>3.633</td>
</tr>
<tr>
<td>SNG</td>
<td>5.108 (12.6, 19.7)</td>
<td>11.359 (34.7, 56.9)</td>
<td>0.191</td>
<td>10.0</td>
<td>2.170</td>
</tr>
<tr>
<td>TW</td>
<td>7.089 (16.1, 24.9)</td>
<td>11.779 (35.9, 58.8)</td>
<td>0.260</td>
<td>9.5</td>
<td>3.063</td>
</tr>
<tr>
<td>CHN</td>
<td>5.209 (13.4, 20.9)</td>
<td>9.959 (30.3, 49.5)</td>
<td>0.209</td>
<td>9.0</td>
<td>2.081</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Known</th>
<th>4 - 7</th>
<th>7 - 14</th>
<th>0 - 11</th>
<th>2.0 - 4.2</th>
</tr>
</thead>
</table>
Problem: What would happen if the effective reproductive numbers
\[R_{\text{eff}}(t) = \int_0^\infty r(t + s)(1 - A(t, s)) \, ds \quad (t \geq 0) \]
oscillate along the critical value 1? (For example, if \(R_{\text{eff}}(\cdot) \) is periodic and oscillates along the critical value 1.)

Remark: Classical SEIR model

Take
\[W(t) = 1 - e^{-t/\tau}, \quad A(t, s) \equiv 1 - e^{-s/\sigma}. \]

Using \(E = F - G, I = G - R \) and \(S = N - F \), as a special case of (1.1) with (replacing (1.1a) by \(F'(t) = r(t)I(t)S(t)/N \)):

\[
S'(t) = -\frac{r(t)}{N}I(t)S(t), \\
E'(t) = \frac{r(t)}{N}I(t)S(t) - \frac{1}{\tau}E(t), \\
I'(t) = -\frac{1}{\tau}E(t) - \frac{1}{\sigma}I(t), \\
R'(t) = \frac{1}{\sigma}I(t).
\]

Classical SEIR model with a time-dependent mean infection rate \(r(t) \).
2. **Linear SEIR model for structured populations**

The structured population \mathcal{G} is divided into subgroups as

$$(2.1a) \quad \mathcal{G} = \{ \mathcal{G}_k : k \in \Omega \}, \quad \Omega \subset \mathbb{N}.$$

Let P be a **discrete and unit** measure on Ω such that

$$(2.1b) \quad \int_{\Omega} dP(k) = 1.$$

Linear SEIR model

- $(S \rightarrow E)_k : \quad F'(t, k) = \text{RoI}(t, k)$ with
 $$\text{RoI}(t, k) := \int_{\Omega} T(t, k, l)(G(t, l) - R(t, l)) \, dP(l),$$

- $(E \rightarrow I)_k : \quad G(t, k) = \int_0^t F(t - s, k)W'(s, k) \, ds,$

- $(I \rightarrow R)_k : \quad R(t, k) = \int_0^t G'(t - s, k)A(t - s, s, k) \, ds.$
Assumption A: Let $0 < \rho \in L^1(\Omega)$ be such that

\[
(2.2a) \quad \rho(l) > 0 \quad (\forall l \in \Omega) \quad \text{and} \quad \int_{\Omega} \rho(l) \, dP(l) < \infty.
\]

Define

\[
(2.2b) \quad L^\infty_\rho(\Omega) := \left\{ f : \|f\| := \sup_{k \in \Omega} \frac{|f(k)|}{\rho(k)} < \infty \right\}
\]

Non-negative and locally bounded solutions in the state space

\[
(2.2c) \quad \mathcal{Z} := L^\infty_{loc}(\mathbb{R}_+, L^\infty_\rho(\Omega)),
\]

Assumptions B:

(i) *(Boundedness conditions on T)* There holds

\[
(2.2d) \quad \int_{\Omega} T(\cdot, \cdot, l) \rho(l) \, dP(l) \in \mathcal{Z}.
\]

(ii) *(Conditions on the latency and recovery CDFs)* For each $t \geq 0, k \in \Omega$ the functions $W(\cdot, k)$ and $A(t, \cdot, k)$ are CDFs on \mathbb{R}_+. Moreover, $W(0, \cdot) \equiv 0$ and

\[
(2.2e) \quad W'(\cdot, \cdot) \in \mathcal{Z} \quad (W'(t, k) = \partial_t W(t, k)).
\]
Denote

\[(2.3) \quad \langle f \rangle := \int_{\Omega} f(k) \, dP(k) \quad (f \in L^1(dP)).\]

Theorem 2.1. (Controllability and Threshold) Let \((F, G, R) \in \mathbb{Z}^3\) be a non-negative solution.

Let \(w : \Omega \to (0, \infty)\) be a strictly positive function such that

\[(2.4a) \quad \int_{\Omega} w(l) \rho(l) \, dP(l) < \infty,\]

and

\[(2.4b) \quad M(t, l) := \frac{1}{w(l)} \int_{\Omega} w(k) R_{\text{eff}}(t, k, l) \, dP(k) < \infty,\]

where

\[(2.4c) \quad R_{\text{eff}}(t, k, l) := \int_0^\infty T(t + s, k, l)(1 - A(t, s, l)) \, ds\]

for all \(t \geq 0, k, l \in \Omega\). We have the following assertions (i)-(ii).

(i) **(Controllability)** If there exist some \(t_0 \geq 0\) and two positive constants \(L\) and \(R_c < 1, R_c \leq L\), such that

\[(2.5a) \quad M(t, l) \leq L \quad (\forall t < t_0), \quad M(t, l) \leq R_c \quad (\forall t \geq t_0)\]

for all \(l \in \Omega\), then there holds \(F_k(\infty) < \infty \quad (\forall k \in \Omega)\) and

\[(2.5b) \quad \langle wF(t, \cdot) \rangle \leq \tilde{L} \times \langle wF(t_0, \cdot) \rangle \quad \forall t \geq t_0\]
with \(\tilde{L} := (L + 1 - R_c)/(1 - R_c) \). As consequence,
\[
(2.5c) \quad \lim_{t \to \infty} \langle wF(t, \cdot) \rangle \leq \tilde{L} \times \langle wF(t_0, \cdot) \rangle.
\]
Moreover,
\[
(2.5d) \quad \lim_{t \to \infty} E(t, k) = 0, \quad \lim_{t \to \infty} I(t, k) = 0
\]
for all \(k \in \Omega \) and
\[
(2.5e) \quad \lim_{t \to \infty} \langle wE(t, \cdot) \rangle = 0, \quad \lim_{t \to \infty} \langle wI(t, \cdot) \rangle = 0.
\]

(ii) (Epidemic spreading into infinity) Assume \(F(0, \cdot) \neq 0 \). If
\[
(2.6a) \quad M(t, l) \geq 1 \quad \forall t \geq 0, \forall l \in \Omega,
\]
then
\[
(2.6b) \quad \lim_{t \to \infty} \langle wF(t, \cdot) \rangle = \infty.
\]
Basic reproductive number R_0: existence problem

Assume

$$T(t, k, l) = T_0(k, l), \quad A(t, s, k) = A_k(s)$$

for all $t, s \geq 0$, $k, l \in \Omega$. Let

$$\sigma_k := \int_0^\infty (1 - A_k(s)) \, ds < \infty.$$

Then $M(t, l) = M(l)$ and

$$w(l) M(l) = \sigma_l \times \int_\Omega w(k) T_0(k, l) \, dP(k) \quad (l \in \Omega).$$

Looking for existence of $w > 0$ such that $(\cdot) \equiv \text{const.}$

Let

$$X := L^1(\rho \, dP).$$

Define a bounded kernel operator $K_0 : X \to X$ by

$$(K_0 u)(l) := \sigma_l \times \int_\Omega u(k) T_0(k, l) \, dP(k) \quad (l \in \Omega)$$

for all $u \in X$. Define

$$R_0 := r(K_0) \quad (= \text{spectral radius of } K_0).$$

Needed: Compactness + Irreducibility (Intuitively, irreducibility of $T_0 = \text{connectivity of all subgroups}$).

Application of Jentzsch’s Theorem.
Special case: Bipartite Populations

Assume

\[T_0(1, 1) = 0, \quad T_0(1, 2) = \beta_1 > 0 \]
\[T_0(2, 1) = \beta_2 > 0, \quad T_0(2, 2) = 0. \]

Then

\[R_0 = \sqrt{(\beta_1 \sigma_1) \times (\beta_2 \sigma_2)} \]

(Malaria Model: Ross (1911) and MacDonald (1957))
3. **Linear SEIR model for Contact Networks**

Let \mathcal{G} be a **dynamic contact network** which as a graph is undirected. Define

\[(3.1a) \quad \mathcal{G}_k := \{\text{all nodes from } \mathcal{G} \text{ of degree } k\}.\]

Choose

\[(3.1b) \quad \Omega \subset \{n \in \mathbb{N} : n \geq 1\}\]

as the parametrization space of \mathcal{G} and define a discrete and unit measure P on Ω as follows. **For each $k \in \Omega$, we define $P(\{k\}) \ (= P(k))$ to be the probability that a randomly chosen node has degree k.**

Let $p(l|k)$ be the conditional probability that a node of degree k is connected to a node of degree l. We assume that the network \mathcal{G} is totally connected in the sense that

\[(3.1c) \quad \sum_l p(l|k) = 1 \quad \forall k \in \Omega.\]
Our SEIR model governing the dynamics of the disease spreading over the network \mathcal{G} has the form:

(3.2a) \[F'(t, k) = r(t)\rho(k) \cdot \sum_l p(l|k)(G(t, l) - R(t, l)), \]

(3.2b) \[G(t, k) = \int_0^t F(t - s, k)W'(s) \, ds, \]

(3.2c) \[R(t, k) = \int_0^t G'(t - s, k)A(t - s, s) \, ds \]

for all $k \in \Omega$ and $t \geq 0$.

Note. W, A are independent of node degrees.

Conditions: $r \geq 0$, ρ is strictly positive such that

(3.2d) \[r \in L^\infty(\mathbb{R}_+), \quad \langle \rho \rangle = \int_\Omega \rho(k) \, dP(k) < \infty, \]

and

(3.2e) \[\sup_{k \in \Omega} \sum_l \rho(l)p(l|k) < \infty. \]

Model (3.2) is a special case of the general SEIR model in §2 with T given by

(3.3) \[T(t, k, l) := r(t)T_0(k, l), \quad T_0(k, l) := \rho(k)p(l|k)/P(l), \]

for all $t \geq 0, k, l \in \Omega$.

Define

\[(3.4) \quad (Hu)(l) = \sum_k u(k)\rho(k)p(k|l) \quad (u \in L^\infty(\Omega), \ l \in \Omega).\]

Facts: H^2 is compact. Jentzsch’s Theorem implies $r(H) > 0$ with strictly positive eigenvalue $w_H \in X = L^1(\rho dP)$.

Choose $w = w_H$. The function $M(t,l)$ defined by (2.4b) with $w = w_K$ and $T(t,k,l) = r(t)T_0(k,l)$ is independent of l:

\[(3.5a) \quad M(t,l) = R_{\text{eff}}(t) \quad \forall t \geq 0, l \in \Omega,\]

where

\[(3.5b) \quad R_{\text{eff}}(t) := r(H) \times \int_0^\infty r(t + s)(1 - A(t,s)) \, ds \quad \forall t \geq 0.\]

We call $R_{\text{eff}}(t)$ the *effective reproductive number* at time t.

As consequences of Theorem 2.1:

(a) If there exists some $t_0 \geq 0$ and two positive numbers L and $R_c < 1$ such that $R_{\text{eff}}(t) \leq L$ for all $t \leq t_0$ and $R_{\text{eff}}(t) \leq R_c$ for all $t \geq t_0$, then any epidemic course given by a non-negative solution of (3.2) will be stopped with a finite epidemic size.

(b) If $R_{\text{eff}}(t) \geq 1$ for all $t \geq 0$, then any epidemic course given by a non-trivial and non-negative solution of (3.2) will spread with an infinite epidemic size.
Basic reproductive number R_0: Assume \[r \equiv \beta, A(t, \cdot) = A_0(\cdot). \]

Then

\[(3.5c) \quad R_0 := r(H) \times (\beta \sigma). \]
Application to scale-free (SF) contact networks

Assume
\[P(k) \propto k^{-\gamma} \quad (2 \leq \gamma \leq 3). \]
Assume that \((\mathcal{G}, p(\cdot|\cdot))\) is pseudo-uncorrelated, i.e.,
\[c_1 \tilde{p}(l|k) \leq p(l|k) \leq c_2 \tilde{p}(l|k), \quad \tilde{p}(l|k) = \sum_{i=1}^{n} \eta_i(k) \frac{\phi_i(l) P(l)}{\langle \phi_i \rangle} \]
for all \(k, l \in \Omega\), where \(c_1 \leq 1 \leq c_2\) are constants, and \(\{(\eta_i, \phi_i) : i = 1, 2, ..., n\}\) are positive functions such that
\[\sum_{i=1}^{n} \langle \rho \eta_i \phi_i \rangle < \infty, \quad \sum_{i=1}^{n} \eta_i(k) = 1 \quad \forall k \in \Omega. \]

Assume that the maximum degree \(k_{\text{max}}\) of \(\mathcal{G}\) is finite. Let \(R_0(k_{\text{max}})\) be the resulted basic reproductive number. We have
\[R_0(k_{\text{max}}) \propto \langle k^2 \rangle / \langle k \rangle \]
and thus
\[R_0(k_{\text{max}}) \rightarrow \infty \quad \text{as} \quad k_{\text{max}} \rightarrow \infty. \]

Consequence: Any SF network with exponent \(2 \leq \gamma \leq 3\) is not controllable under any imperfect interventions whenever the conditional probability \(p\) is pseudo-uncorrelated.
One of such SF networks is the so-called Barabási-Albert model.
Figure 2. Realization of a Barabási-Albert model

Problem: Realization of a safe CN. “Vaccinating” the nodes, how?
Reference:

